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but this scheme cannot handle strong shocks. The conser-
vation errors become so large that the solution no longerA new numerical scheme for computing multicomponent flows

is presented. It is able to handle strong shocks, is pressure oscillation converges to the right one. See Hou and Le Floch [3] for
free through the contact discontinuities, and guarantees the posi- a study of this kind of problem.
tivity of mass fractions. Some numerical experiments on shock
tubes indicate the convergence to the correct weak solution. Com-

1. PROBLEM DESCRIPTIONparisons with classical finite volume schemes are also proposed.
Q 1996 Academic Press, Inc.

The internal energy of each species Si follows (1) thus
the total internal energy is

In this paper, we are interested in the simulation of
« 5 rcvT, (2)multicomponent nonreacting flows. The thermodynamical

assumptions are:
where r 5 r(1) 1 r(2) and

• the gas is a mixture of ns calorically perfect gases Si .
Their equation of state is cv 5 Y(1)cv1 1 Y(2)cv2 .

«i 5 ricviT, (1) The relation between the pressure p and the internal en-
ergy is

where «i is the internal energy of the species Si , ri is its
density, T if the temperature, and the specific heat cvi is p 5 (c 2 1)«, (3)
independent of T,

• the pressure is given by Dalton’s law. where

Without loss of generality, we may assume that ns 5 2.
This kind of problem has already been widely studied; c 5

Y(1)cp1 1 Y (2)cp2

Y(1)cv1 1 Y (2)cv2
. (4)

see [8, 1, 6, 5], for example. The classical finite volume type
of schemes are usually faced with two major difficulties: the

As usual, we have set cp1 5 cicvi . We often denote c 2 1mass fractions Y and 1 2 Y may become negative; the
by k. The total energy per unit volume ispressure may present oscillations through contact disconti-

nuities, instead of remaining continuous. These difficulties
E 5 « 1 Asru2;are intimately related to their ‘‘finite volume’’ nature.

Let us describe some remedies.
here u is the velocity.

Positivity. A modification of the numerical flux intro- Several equivalent sets of partial differential equation
duced by Larrouturou [6] enables us to guarantee the posi- may be considered for this model. They are written as
tivity of mass fractions under a CFL-like condition. This
modification does not prevent pressure oscillations [2].

W
t

1
F(W)

x
5 0

Pressure. S. Karni has introduced a nonconservative
scheme that enables us to properly simulate the contact
discontinuities (see [4, 5]). The positivity of a mass fraction and have the same weak solutions. We display some ex-

amples:is also guaranteed. The conservation errors are controlled,
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1. Symmetric formulation ([1], for example) and the momentum. The value of c is computed from
those of r(1) and r(2). The four conserved quantities are
the average of the exact values in the cells. Thus the value
of c is an ‘‘averaged’’ value that does not correspond the
value that would have been needed to preserve theW 5 1

r(1)

r(2)

ru

E
2, F(W) 5 1

r(1)u

r(2)u

ru2 1 p

u(E 1 p)
2. (5)

pressure. Once the pressure is wrong in one cell, the
velocity will go wrong at the next time step, and so on.
The situation is more or less serious, depending on the
initial conditions. Quirk and Karni [7] give an example

2. Unsymmetric formulation ([6, 5], for example) where the numerical solution has little to do with the
exact one. It can be easily understood that in combustion
or detonation problems, the presence of a stiff source
term can amplify this deficiency.

In [5], this problem is solved by using a nonconservativeW 5 1
r

rY

ru

E
2, F(W) 5 1

ru

rYu

ru2 1 p

u(E 1 p)
2. (6)

formulation of the Euler equation with primitive vari-
ables. Karni notices that the evolution of p only depends,
in this formulation, on the gradients of p and u. Since
they vanish through a contact discontinuity, p should

3. ‘‘Gamma’’ formulation ([8], for example) remain constant.
In what follows, we show how to modify a finite volume

scheme in order to prevent pressure oscillations. We illus-
trate this technique when Roe’s Riemann solver is em-
ployed. We show the first-order and second-order versionsW 5 1

r

rc

ru

E
2, F(W) 5 1

ru

rcu

ru2 1 p

u(E 1 p)
2. (7)

of this scheme. We show that it is robust enough to handle
strong discontinuities. We show by comparing the solutions
with the exact one that mesh convergence to the proper
weak solution is indeed reached.

These three formulations are equivalent, since c is an ho-
mographic function of the mass fractions.

2. GENERAL PRINCIPLE, FIRST-ORDER VERSION OFThe major drawback of the finite volume formulations
THE SCHEMEthat can be rewritten (in their first-order version) as

We start from the first-order upwind scheme
Wn11 5 P ? E ? Wn,

Wn11
i 5 Wn

i 2 l[Fi11/2 2 Fi21/2].is not the evolution operator E (since even when it is exact,
the same problem on the pressure exists) but lies in the
projection operator P. To illustrate this, let us consider In what follows, the formulation (5) is used, but any
the system (5) for a contact discontinuity, where the Mach other formulation might have been employed here. In this
number is large enough for the finite volume scheme to paragraph, we first examine the behavior of a contact dis-
reduce to continuity with Roe’s scheme. Latter on, we discuss what

happens with other schemes. For the sake of simplicity,
Wn11

i 5 Wn
i 2 l[F(Wn

i11) 2 F(Wn
i )]; we assume that the pressure and the velocity are uniform

throughout the computational grid. What we have in mind
thus all that follows is valid for any finite volume numerical is to find a condition that enable this contact discontinuity
scheme. We assume for the sake of simplicity that the to remain a contact discontinuity, i.e., un11

i 5 un
i ; u and

pressure is uniform (pn
j 5 p, for all j), as well as the velocity pn11

i 5 pn
i ; p for any indices i.

(un
j 5 u). As it is shown in [1] and systematically exploited The numerical flux Fi11/2 5 F(Wi , Wi11) is given by

in [2], the first iteration of the scheme preserves the velocity Roe’s linearization,
u but the value of pn11

i is different of p. In [5], the same
kind of analysis is done for the Roe scheme adapted to

F(WL , WR) 5 As[F(WL) 1 F(WR) 2 uAu(WR 2 WL)].various multicomponent models.
The explanation is the following. The evolution of partial

densities, momentum, and energy are independent. The The matrix A depends on Y(1), Y(2), u, H, xj 5 p/rj

( j 5 1, 2) and k 5 p/«. They have the following values:pressure is obtained through the energy by c, the density,
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Since En
i 5 p/kn

i 1 As rn
i u2 and En11

i 5 pn11
i /kn11

i 1 As rn11
i u2 ,

Y( j) 5
ÏrLY( j)

L 1 ÏrLY( j)
R

ÏrL 1 ÏrR

, j 5 1, 2, we can see that a necessary condition for pn11
i 5 p is

u 5
ÏrLuL 1 ÏrRuR

ÏrL 1 ÏrR

1
kn11

i
5

1
kn

i
2

l

2
(un

i [D91/2 1 D921/2] 2 uun
i u[D91/2 2 D921/2]). (10)

H 5
ÏrLHL 1 ÏrRHR

ÏrL 1 ÏrR

. Equation (10) is nothing more than a discretization of

The value of k is given by (4), where Y(1) and Y(2) are S1
k
D

t
1 u S1

k
D

x
5 0.

replaced by the corresponding average values defined
above. Those of xi are replaced in such a way that

All together, our numerical scheme is the following:

Dp 5 x1Dr(1) 1 x2Dr(2) 1 kD«, (8) 1. the update of r, ru, and E by the classical multispe-
cies Roe scheme,

2. the update of 1/kn
i by (10). The mass fractions Y(1),n11we have set Dr( j) 5 r( j)

L 2 r( j)
R , etc. to simplify the notations;

and Y(2)n11 are obtained by inverting (4).see [1], for example.
Assume now that the three states Wn

i11 , Wn
i , Wn

i21 have Since 1/kn
i [ [mini (1/k0

i ), maxi (1/k0
i )] if l maxi uun

i u #
the same pressure p and the same velocity u. A straightfor- 1, the mass fractions Y(1) and Y(2) remain in [0, 1] with the
ward calculation shows that if one sets same CFL condition as in the original scheme.

3. HIGH ORDER EXTENSIONSDi11/2 5 ri11 2 ri , D9i11/2 5
1

kn
i11

2
1
kn

i
,

We assume that a high order extension of the original
D(1)

i11/2 5 r(1)
i11 2 r(1)

i , D(2)
i11/2 5 r(2)

i 1 1 2 r(2)
i , finite volume scheme is obtained through the MUSCL

method. In each cell, we get a reconstruction of the conser-
vative variables:

we get

Wn
i (x) 5 Wn

i 1 dWn(x). (11)

The slope is computed so that the average of (11) in
[xi21/2 , xi11/2] is Wn

i . The variation dW(x) is obtained by
uAi11/2u(Wn

i11 2 Wn
i ) 51

uuuD(1)
i11/2

uuuD(2)
i11/2

uuuuDi11/2

uuu u2

2
D1/2 1 pD91/2

2. computing slopes either on the primitive or characteristic
variables.The slope may be limited with the help of limit-
ers, or computed with the help of the ENO method. In
both cases, we assume that if all the points of the stencil
used to compute dW share the same pressure p and the
same velocity u, then the velocity and the pressure definedHere we have taken into account the relation (8) with
by (11) are u and p.Dp 5 0.

To simplify the text, we assume that the standard highUsing all this, it is easy to see that
order finite volume scheme is the following second-or-
der scheme:

rn11
i 5 rn

i 2 l(u(D1/2 1 D21/2) 2 uuu(D1/2 2 D21/2))

un11
i 5 u

(9)
Wn11/2

i 5 Wn
i 2

l

2
(F(Wn1

i ) 2 F(Wn2
i )) (12a)

Wn11
i 5 Wn

i 2 l(F(Wn11/21
i , Wn11/22

i11 )

(12b)
En11

i 5 En
i 2 l Sup

2
[D91/2 1 D921/2] 2

uuuu
2

[D91/2 2 D921/2]

2 F(Wn11/21
i21 , Wn11/22

i ))

1
u2

4
[D1/2 1 D21/2] 2

uuuu2

4
[D91/2 2 D921/2]D .

Here, we have set for l 5 n or n 1 1/2,
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TABLE I
Wl1

i 5 Wl
i 1 dWl SDx

2 D ,
Initial Conditions

State Y r u p (in Pa)
Wl2

i 5 Wl
i 1 dWl S2Dx

2 D .
Left (helium) 1. 14.54903 0. 194.3 3 105

Right (air) 0 1.16355 0 105

The exact flux is used in the predictor step, while the Roe
flux is employed in the corrector one.

To construct our multicomponent scheme, the simplest
1. Predictor step. Update r, ru, and E by (12a) and 1/way is to update 1/k in such a way that an initial condition

k by (13),made of a contact discontinuity (with velocity u and pres-
sure p) will remain a contact discontinuity. In order to 2. Corrector step. Update r, ru, and E by (12b) and
simplify the text, we introduce, for any w 5 p, u or p the 1/k by (14).
following notations:

All our numerical experiments show that this scheme is
stable under the same CFL condition. The mass fractions
remain positive. An analysis is provided in the Appendix.w6

i11/2 5 Hwi 1 Asdwi ,

wi11 2 Asdwi11 .
4. NUMERICAL EXPERIMENTS

The dwi are computed from (11). Their expressions depend
In this section, we want to illustrate this methodology,on the kind of variable we have used to define dW. The

to compare it to the existing finite volume one, and toslope limitation should be done in such a way that if the
show it can handle strong shocks. We also wish topressure and the velocity are uniform, then the extrapo-
check whether the numerical solution converges to thelated pressure and velocity should also be uniform.
weak one.According to the assumptions we have made, if at time

tn , Wn defines a contact discontinuity, and we have
4.1. Comparison with Finite Volume Schemes

r1
i11/2 5 rn

i 1 Asdri , r2
i11/2 5 rn

i11 2 Asdri11 We consider the test case defined in Table I. The ratio
of specific heats are respectively 1.67 and 1.4. The specificu6

i11/2 5 un
i 5 un

i11 , p6
i11/2 5 pn

i 5 pn
i11 heats are respectively cv 5 2420 and cv 5 732 (International

Unit System). Figures 1, 2, 3, 4 give the density, velocity,1
k1

i11/2
5

1
kn

i
1

1
2

d S1
ki
D,

1
k2

i11/2
5

1
kn

i11
2

1
2

d S 1
ki11

D . pressure, and c 2 1 for the first-order scheme. This exam-
ple is interesting because it indicates a very vicious behav-
ior of fully conservative finite volume schemes for multi-Some straightforward calculations show that after the
component flows. The mesh has 101 cells. From Figs. 1, 2,predictor step, the velocity remains the same and the pres-
4 one can see that both schemes behave the same. Thesure also remains invariant, provided that
only visible difference lies in Fig. 4 (where the conservative
scheme seems even less dissipative) and mainly in the den-
sity, Fig. 3, where the classical scheme exhibits a small1

kn11/2
i

5
1
kn

i
2 lun

i S 1
k1

i11/2
2

1
k2

i11/2
D . (13)

undershoot. The contact discontinuity is also extremely
smeared. In order to improve the results, we now apply

Then, the same result is true after the corrector step, pro- the MUSCL technique on the characteristic variables.
vided that 1/k is updated by While the results on the velocity and the pressure (Figs.

5, 6, 7, 8) are still of the same quality, with the same remark
for k, the density shows a very different behavior; there is1

kn11
i

5
1
kn

i
2

l

2
(un11/2

i [D91/2 2 D921/2 1 d1]
a very large undershoot for the classical scheme, which is
not true for the one we propose.

2 uun11/2
i u[D91/2 2 D921/2 2 d2])

(14)
We also present some computational results on Karni

and Quirk’s test case (Table II). It consists of a shock tubed1 5 As(dn11/2
i11 2 2dn11/2

i 1 dn11/2
i21 )

filled with air (c 5 1.4, cv 5 0.72), where a shock wave
d2 5 As(dn11/2

i11 2 dn11/2
i21 ). moves to the right. In the preshock wave state, a bubble

of helium is set (c 5 1.67, cv 5 2.42) (C.G.S. unit system).
We use 201 cells, the shock wave is initially at x 5 0.25,In Eqs. (14), dp

l stands for d(1/kp
l ).

Our modified scheme is the following: and the bubble sits between x 5 0.4 and x 5 0.6. The
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FIG. 1. Velocity, 1st order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.

FIG. 2. Pressure, 1st order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.
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FIG. 3. Density, 1st order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.

FIG. 4. c 2 1, 1st order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.
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FIG. 5. Velocity, 2nd order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.

FIG. 6. Pressure, 2nd order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.
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FIG. 7. Density, 2nd order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.

FIG. 8. c 2 1, 2nd order: e, present scheme; 1, finite volume scheme of [5]; dotted line, exact solution.
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TABLE II TABLE III

Shock/Bubble Interaction Initial Conditions for the Convergence Study

Y1 r 2u p cY1 r u p

Postshock 1 1.3765 0.3948 1.57 Left 1 1 0 10 1.6
Right 0 2 21 0.1 1.4Preshock 1 1 0 1

Bubble 0 0.138 0 1

conservative scheme of [5]. Spurious oscillations, as withresults are presented at time t 5 0.35, are obtained with
Quirk and Karni’s results are visible for the conservativethe second-order version of both schemes with extrapola-
scheme and are absent for the present scheme.tion on the characteristic variable. The CFL number is 0.75.

We can see with these figures, that our new scheme alsoFigure 9a shows the pressure obtained with the present
behaves much better than the old one; no oscillations atscheme, while Fig. 9b shows what is obtained with the
all are visible. This conclusion is the same for each test
case we have run.

5. CONVERGENCE TO THE CORRECT
WEAK SOLUTION

This point is studied numerically. The new scheme is
tested with 5001 mesh points in its second-order version
(reconstruction on the primitive variables). A new test case
is employed, to get stronger discontinuities (Table III).
The shock Mach number (defined as (Ushock 2 uR)/aR is
7.97; its velocity is 1.11. The contact discontinuity velocity
is 0.73; its pressure is 7.40. We present the density in [0,
1] (Fig. 10) and a zoom (Fig. 11) that enable us to better
see the contact discontinuity and the shock wave. We
clearly see that the numerical solution is very close to the
exact one. In particular, the correct levels of density are
obtained and the discontinuities move at the right speed.
The first conclusion is true, whatever the variable (pres-
sure, velocity, k, or Mach number).

This conclusion is not really surprising; c does not
change in a fan or a shock wave and the present scheme
is nothing more than the classical one in this case. In
a contact discontinuity, the gradient of the velocity must
vanish. Since we integrate simultaneously the approxima-
tions of

rt 1 ( ru)x 5 0, S1
k
D

t
1 u S1

k
D

x
5 0,

it is legitimate to expect the right contact discontinuity
speed.

6. CONCLUSION

We have presented a new scheme for multispecies com-
pressible flow simulations. It is constructed to suppress or
minimize the spurious oscillations that are generated byFIG. 9. Pressure, 2nd order: present scheme (a); conservative scheme

(b); dotted lines, exact solution. conventional finite volume schemes. This property is also
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FIG. 10. Density, 2nd order, 5001 mesh points: e, present scheme; dotted line, exact solution.

true for Karni’s scheme, but the present one, from its We are interested in the behavior of 1/k. We assume that
1/k0

i [ [a, b]. We recall that the predictor–corrector schemeconstruction, is able to handle strong shocks. Nevertheless,
note the recent developments of [10]. is given by:

The present analysis has been done with the help of a
1. at each time step, staring from the valuesRoe scheme. The same construction could have been done

( rn
i , rn

i un
i , En

i , 1/kn
i )T, one evaluates slopes on the physicalfor any finite volume constructed from a Riemann solver;

variables ( r, u, p, 1/k) or the characteristic variables (au ,the key property which is needed is that, in an exact contact
au1c , au2c , 1/k).discontinuity, after one time step the velocity should re-

2. Slope limiters are used in order to avoid the creationmain uniform. This is not true for the van Leer scheme;
of new extremas. In particular, the limitation on 1/k isthus the present construction cannot be extended. One
done in such a way that the reconstructed values 1/kn

i61/2remedy would be to apply the hybridation technique of
at the cells interfaces xi61/2 satisfyCoquel and Liou [9].

The extension to more that one dimension has not yet
been carried out. We wish to do it in the near future. This
extension should be done according to the same principles. min

ui2j u#1

1
kn

j
#

1
kn

i61/2
# max

ui2j u#1

1
kn

j
.

Nevertheless, one should notice that in more than one
dimension, pressure oscillation may be created, even for
a single species gas, when the slip lines are aligned with This is satisfied by the minmod limiter.
the mesh; this new phenomenon should be included in

3. The scheme (12a) and (13) is applied.the analysis.
4. We then reuse the same limited slopes to evaluateExtensions to more that two species is straightforward

the values Wn11/2
i61 in the scheme (12a, 14)(consider W 5 ( r, r1 , ..., rns22 , 1/k, ru, E) and apply the

same principles).
To simplify the notations, we set

APPENDIX A: ANALYSIS OF THE
SECOND-ORDER SCHEME u1 5 As(un11/2

i 1 uun11/2
i u), u2 5 As(un11/2

i 2 uun11/2
i u;

We assume that the scheme on the density, momentum,
and total energy is stable under a given CFL condition. these are the positive and negative parts of un11/2

i .
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FIG. 11. Zoom of the density, 2nd order, 5001 mesh points: e, present scheme; dotted line, exact solution.

Since 1/ki 5 As(1/k2
i11/2 1 1/k1

i21/2), one can rewrite (14) ACKNOWLEDGMENTS
as
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1
kn11

i
5 S1

2
2 lu1D 1

k2
i11/2

1 lu1 1
k2

i21/2
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